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Abstract

A new analytical method for solving mixed boundary value problems along holes in composite plates is presented.
This addresses problems, where a part of the hole boundary is stress-free, and the other part is subjected to dis-
placement or/and load boundary conditions. The present approach simplifies and speeds up the numerical calculations
for the implementation of the boundary conditions by deriving stress functions, which automatically satisfy the stress-
free boundary condition over a part of the hole boundary. Only the boundary conditions on the loaded part of the hole
need, therefore, to be enforced, typically by a numerical technique such as collocation. Application of this method to
orthotropic laminates with a pin-loaded hole problem is discussed. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mixed boundary value problems in solid mechanics are intrinsically difficult to solve analytically owing
to the mixed nature of the boundary conditions: stresses are prescribed on part of the boundary, and
displacements on the remaining part. The mathematical difficulties encountered in the analytical derivation
are supplemented by numerical difficulties found when enforcing the boundary conditions. A specific type
of mixed boundary value problem is that of plates (isotropic or anisotropic), which contain one or more
holes on the boundary on which load or displacements are applied. This work presents a general theory for
anisotropic plates with a hole, where a part of the hole boundary is stress-free. A wide range of practical
problems fall into this category. A typical example is the pin-loaded hole problem. In this case, the region of
the hole that is not in contact with the pin is the stress-free part of the boundary.

The present theory is able to simplify the problem by incorporating the stress-free boundary conditions
directly into the expression for the stress functions, from which the stresses and displacements in the plate
are directly derived. The stresses and displacements therefore, automatically satisfy the stress-free boundary
conditions, and only the remaining boundary conditions on the rest of the hole boundary need to be
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enforced. This simplifies the nature of the problem by simplifying the boundary conditions, and can even
reduce it to a simple boundary value problem if the remaining boundary conditions on the rest of the hole
boundary are pure displacement conditions. In addition, the numerical methods used to enforce these
remaining boundary conditions can be implemented faster, hence cutting down computing costs, because
the length of the hole boundary involved is shorter.

The present approach is based on the theory of anisotropic elasticity developed by Lekhnitskii (1968)
and subsequently by Savin (1961). A brief review of the theory applied to anisotropic plates containing
holes is presented in Section 2.1. In order to reduce the mathematical calculations, the case of orthotropic
plate containing a single hole will be treated here, but the theory can be easily extended to the case of an
anisotropic plate containing multiple holes. The derivation of stress functions satisfying the stress-free
boundary conditions on part of the hole boundary is given in Section 2.2.

2. Theory
2.1. Complex variable theory

The present work is based on the theory of anisotropic elasticity developed by Lekhnitskii (1968). This
approach leads to an analytical expression for the stress functions {¢,(z;)},_,, in the form of series with
unknown coefficients. The stresses and displacements in the plate can be calculated, once these stress
functions are determined. Eq. (1) give the relation between the displacements (u, v) in the ¥ and y directions,
respectively, and the stress functions at a point M(x,y) on the plane:

{u(x’y):2me{pl¢l(zl)+p2¢2(22)}’ (1)
v(x,y) =2 Re{q19:(z1) + @2 $1(22) },

with
zx=x+uy fork=172 (2)

The coefficients 1, p; and ¢, depend only on the plate elasticity constants and are given in Appendix A. The
in-plane stresses (o, g, T,,) are related to the stress functions by

0,(x,y) = 2 e {12 41 (1) + B 9)(=) |,
0,(r.y) = 2 Re{ ¢ (z1) + ¢(=) |, ()
to(x7) = —29te{ o) (z1) + 1 h(z) }.

where a prime (') indicates differentiation with respect to the variable z; or z,.

The unknown coefficients in the stress functions {¢,},_,, are determined by applying the boundary
conditions on the hole surface that correspond to the physical problem. These boundary conditions are by
nature of a mixed-mode type, with displacement conditions enforced over part of the hole, and stress
conditions enforced over the rest of the hole boundary.

Lekhnitskii (1968) and Savin (1961) showed that the stress functions for an anisotropic plate containing
a hole and subjected to a uniform stress state at infinity, {¢;(z)},_,, are of the form:

i (z4) = Ax log (zx) + (B} +1C}) zi + ¢y (z) for k=1,2, (4)

where {¢(z)} 4—1. are holomorphic functions in the region S outside the hole, and go to zero at infinity.
They are therefore of the form:
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Fig. 1. Loads on the hole boundary.

o) (z1) Z " fork=1,2. (5)
n=0

In Eq. (4), the logarithm represents the presence of the hole. The coefficients B; and C; represent the
contribution from the uniform stress state at infinity and can be related to these remote stresses (Savin,
1961). For simplicity, it is considered here that no remote stresses are applied, and therefore B; = C; = 0.
In order to express the boundary conditions on the hole, the stress functions ¢ (z;) must be related to the
forces X,(s) and Y,(s) in the ¥ and y directions, respectively, at a point M located on the hole edge, Fig. 1.

The real s is the coordinate of the point M(x,y) along the hole boundary. From Savin (1961)

{zme{(b (Zl)+¢2(22 }_ fo Y,ds+ C) = fl(xvy)v (6)
2Re{1$1(21) + ps(22)} = [y Xuds + C = fa(x, ),

where the complex numbers z, are related to the coordinates (x, y) by Eq. (2), and C; are constants. Eq. (6)
define the functions fi(x,y) and f,(x,y) as equal to the right-hand sides.

From Eq. (6), an expression for the resultant vector (Xag + i¥ap) acting on an arc (AB) of the hole
boundary can be derived:

B
XAB+iYAB:/ X, +1Y,ds
g NG

= Xap +1¥ap = [(M —1)¢y(z1) + (fh - i) G1(z1) + (1 — 1) s (z2) + (ﬁz - i) (132(22)} )

A

where a top bar (V) represents the complex conjugate.

The coefficients A; in Eq. (4) are then related to the resultant vector (X + 1Y) of forces on the hole
boundary by expressing first, the condition that (X + iY) is equal to the quantity (X,(s) + i¥,(s)) integrated
over the whole hole boundary H, and second, that displacements (u(s), v(s)) on the hole do not increase in
value after a complete turn around H, Fig. 1. This leads to the following pair of equations:

e ©

Substituting Eqs. (1) and (7) (with 4 = B) into Eq. (8), the following system of equations is obtained:
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(1 +ip)A4; — (1 - i,a1>,afl + (1 +1ipp)4s — (1 + iﬁz)/fz — gy

: N - . N - )

(71 +1ig1)4; — (ﬁ +1671)A1 + (p2 +ig2)4> — (15 +1672>A2 =0.
In Eq. (9), we have used the fact that around H, the function {log(z)} undergoes an increase, equal to (2mi).
The orthotropy of the problem ensures that the vector resultant of forces on H is along the X axis.
Therefore, X = F and Y = 0. Solving Eq. (9) yields the complex coefficients 4; and 4, under the following
form:

Ak :FAk for k = 172 (10)

The complex constants {A.},_,, are given in Appendix A.

In the following calculations, it is more convenient to perform a conformal transformation and map the
outside of the hole S of radius R into the inside of the unit circle (y) (Fig. 2). This conformal transformation
is defined by Eq. (11) (Savin, 1961):

s A RO
R(1 + i)

1 — iy
{

Using Eq. (11), the stress functions {¢;(z;)}r=12 in Eq. (4) can now be expressed as a function of {, the
coordinate image of z; by the conformal transformation,

Gu(z2) = B () = —F A Tog(0) + ®)(0) for k= 1,2, (12)

zk(C):%e (1 +iw) ¢+ = {z) =

(11)

It can be proved (Berbinau and Soutis, 1998) that the new functions { ®?({)} 4—1, defined by Eq. (12) are
holomorphic inside the unit circle. Eq. (6) then becomes

{29‘6{@1(0)4—452(0')} :fl(g)a (13)
29e {191 (0) + 1aoa(a)} = ().

Here the argument of the functions {®({)},_, , is 0 = €'’ as the points are on the unit circle (Fig. 2). Now,
let us define functions {/{(0)},_, , as follows:

Fig. 2. Conformal transformation.
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{ Re {DY(0) +q>° } YU
Re {1, 9](0) + 1, P5(0) } = f 2
The £(6) functions can be related to the fk(G) functions using Egs. (12) and (13), i.e.
{f1°(0) = f1(0) + 2F Re{(A; + Ay)log(a)}, (15)
13(0) = £2(0) + 2F Re {(1,A1 + 1yAs)log () }.

The cornerstone of the present theoretical approach is the Schwartz formula mentioned by Muskhe-
lishvili (1963) and Savin (1961). The Schwartz formula relates a function F({) holomorphic inside the unit
circle (y) to the value of its real part {Re[F]} (6) on the contour of the unit circle and is given by

(14)

F (0 :%nif{%e[F]}( a+g—+constant (16)

Applying the Schwartz formula to the holomorphic functions <1>2(é’) and using Eq. (14), one obtains

(O =5 §, [1/70) ~ £(0)] 72 %
3 (0) = g & [7(0) = £(0)] 2 e

The constants in Eq. (16) have been discarded as they have no influence on the stresses.

The boundary value problem is now ready to be solved. Indeed, the functions f;(0) can be calculated
using Eq. (6) from X, and Y,, which are known directly from the stress boundary conditions around the
hole. The functions f? (f) can then be calculated using Eq. (15). Substituting f{ () into Eq. (17) and
evaluating the integrals, the functions &} ({) are obtained. The functions @; ({) can then be derived from Eq.
(12). Using the conformal transformation, Eq. (11) will ultimately give the stress functions ¢y (z;) from
which stresses and displacements around the hole can be calculated from Egs. (3) and (1), respectively.

(17)

2.2. Case of a hole with no stresses on part of its boundary

In all previous analytical work on problems with boundary conditions applied to a hole boundary (see
for instance De Jong, 1982; Murthy et al., 1991; Naidu et al., 1985; Mangalgiri and Dattaguru, 1986; Ir-
eman et al., 1993; Rangavittal, 1995), the Schwartz formula was not used. Instead, the stress functions given
by Eq. (12) were written in the following form, using the fact that the functions &} ({) are holomorphic
inside the unit circle:

G (z1) = 4 (O) = —FAlog () + iaff) " fork=1,2, (18)
n=1

where the coefficients a*) are complex constants. The boundary conditions on the hole (including the stress-
free conditions if apphcable) were then enforced in order to calculate the associated coefficients a¥ by an
appropriate numerical method, such as the collocation method.

In the present work, the aim is to incorporate a part of the boundary conditions (namely the stress-free
conditions) directly into the stress functions, so that these stress functions satisfy automatically the stress-
free conditions. The numerical procedure for the enforcement of the remaining boundary conditions will
then be simplified, and less time consuming. Such an approach is possible as the holomorphic stress
functions 452 (0) have been written in the form of Eq. (17), thanks to the use of the Schwartz formula (16).
The derivation of stress functions that automatically satisfy the stress-free boundary conditions on part of
the hole is performed below.

A part of the hole boundary is therefore, assumed to be stress-free, and the rest of the hole boundary is
subjected to displacement conditions, stress conditions, or a mixture of both. As the plate is orthotropic
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/—ﬁ
Stress-free
region

Fig. 3. Geometry of a partially loaded hole in an orthotropic plate.

(the loading axis X is along one of the principal directions), the boundary conditions are symmetrical with
respect to the X axis. Hence, the geometry of the problem is as indicated in Fig. 3. The hole radius is R. The
plate is considered infinite.

The angle 6. defines the stress-free region and the region, where the boundary conditions are applied.
The stress-free region is thus defined by |0] > 0.. The region, where boundary conditions are applied is
defined by |0] < 0.. In the latter region, the boundary conditions will be combinations of a radial and a
circumferential boundary condition chosen among the following four conditions:

u:(R,0) = D(0)

oi(R, 0) = S,(0) for |0] < 0, (19a)

radial conditions {

ug(R, 0) = Dg(O)
‘L'rg(R, 6) = Srg(e)

In Egs. (19a) and (19b), u,(r,0) and uy(r,0) are the radial and circumferential components of the dis-
placements, respectively. Similarly, a,(r,0) and 7,4(r,0) are the normal and shear components of the stresses,
respectively. The functions D, (), S;(0), Dy(0), and S;4(6) are known functions of the angle 6 and represent
the boundary conditions along the hole.

The loaded region defined by |6| < 6. may be subjected, in the most general case, to a normal pressure
p(0) and shear #(0) distributions, Fig. 3. The X, and Y, components of the force at a point M(s), Fig. 1, are
therefore (Lekhnitskii, 1968; Berbinau and Soutis, 1998),

{m:—p(e)"—iﬂ(@)%, (20)

circumferential conditions{ for |6] < .. (19b)
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The function f; and £, defined by Eq. (7) can now be written in terms of p and ¢ by substituting X, and Y,
from Eq. (20)

f1(0) =R [ p(0) (0)d0+th cos(@)d@—i—kl, B )
{fz( — R [ p(0) cos(6)d0 — R [ #(0) sin (6)d0 + . where k = constant. (21)
Following Savin (1961), the unloaded region on the hole boundary starts at the point A defined by 6 = 6..
Hence at point 4, f; = f, = 0. This gives the values of the two constants in Eq. (21), and eventually the
following expression for f1(0) and f>(0) are obtained:

{ R( [ p(0) sin(0) + t(0) cos () do) —R{[fp(@) sin (0) + ¢(6) cos () do] Oc} for [6]< 6
R( [ p(0) cos(0) — #(6) sin (0) d6) —R{[ [ p(0) cos (0) — 1(0) sin (0) d@]gc} o
(22)
Eq. (22) are valid for 0. = 0 = — 0.. Indeed, when 6 reaches (—0.), the first integrals in f1(0) and f;(0)
become equal to their value at # = —6.. Beyond (-6,), i.e. in the region |6] > 6., they remain constant as

that region is stress-free. Therefore, the functions f;(6) and f,(6) are constant over |6| > 6. and equal to
{[fp sin () + #(6) cos (0) do] 7(%} {[fp sin (0) + ¢(0) cos () d@]gc}
{ [ [ p(0) cos (0) — ¢(0) sin (0) d0] _OC} { [ p(0) cos (0) — £(0) sin (0) d0] (,C}
for |6] > 6. (23)

Now, as the boundary conditions are symmetrical with respect to the X axis, p(6) is even and #(0) is odd.
Thus, Eq. (23) becomes

f1(0) =0
{fz(@ ) = =2R{[ ] p(0) cos (6) — 1(0) sin (6) 0], } for |0] > .. (24)

Now, by moving once around the hole from point A4 in the clockwise direction, functions f;(68) and f>(0) will
increase by amounts equal to the right-hand sides in Eq. (24). Hence, from Eq. (6), the resultant of the
forces on the hole boundary are

{X - sz{ [ [ p(0) cos(0) — ¢(0) sin(0) d] @c} (25)
Y =0.

There is no component of the resulting force in the ¥ direction. This was to be expected as the problem is
symmetrical with respect to the ¥ axis, and therefore, the resultant F of the loads on the hole boundary is in
the X direction. The resultant force F is therefore,

F— 2R / " (0) cos(0) — 1(6) sin (6) do. (26)

Now, the functions f; and f; need to be expressed in terms of ¢ before we can calculate the integrals in
Eq. (17). Using ¢ = ¢’ in Egs. (23) and (25), we obtain

-3 %1—%2)10(6) ( 72) (o) do
flor={ FELS (T2 %) plo) +1(1 ) i(o)do],  for 0]<0, )
0 for |0] > 0,
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5/=i(1+2%)p(o) +(
o) = 2[f—l(l +4)plo )t(o)da}gc for |0| < 0. (28)
t(o

)ds], for |6] > ..

In Egs. (27) and (28), the functions p(c¢) and #(o) are defined from the previous functions p(6) and #(6) by the
expressions p[0(o)] and #[6(o)]. Substituting Eq. (15) into Eq. (17), after simplifications, we obtain for
k=12

K= (S () 0 oo (25 %) o

From Savin (1961), the first integral in Eq. (29) is:

1 ‘
%(Z—i)%@dozwlog(%—c)unz, (30)

where o, is defined as ¢, = e’.
An expression for the stress functions {®} ({)},_, , can now be derived by substituting Eqgs. (27), (28) and
(30) into Eq. (29). Then the stress functions {®; ({)},_, , are obtained by substituting A 1, into Eq.

(12). The calculations are straightforward but lengthy. Only the final results are presented here:

0,00 = —F{Ak fog({) - 51— log (1 - ce‘"c)} A Y G1a)
with
Lo o o
w0 =5 [ [Ukw)Uk(ac)](gfg) @ (31b)

o (1) (1 19

The stress functions ¢,(z;) = @({(z;)) could then be directly obtained from Eq. (31) by changing { into z;
using Eq. (11).

The next step is to derive a closed form expression for the stress functions ¢;(z;) under the form of a
series with unknown coefficients. For this purpose, the stress distributions p(6) and #60) in Eq. (31c) are
expressed as a Fourier series with unknown coefficients. These series are

p(0) = By + S P, cos (n0),
1(0) = ST, sin (n0).

The coefficients Py and {P,, T,,},_, , are unknown.
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Using the relation ¢ = €', p(¢) and (o) take the following form:

_" — i < n —n
p(6) =Py += PZ g, t(a)ffET,,Z:(a —a"). (33)
The functions Uy (o), Eq. (31¢) can then be calculated by substituting Eq. (33) into Eq. (31¢) and integrating.
They are
s ! i 1 5 n+1 1
Uk(G):EPzﬂ.x—k 6—1—; +§T2 o +iT log (o ZPH +W

i n+1( H_%)' (34)

The new coefficients { P,, T,} are related to the coefficients {P,, T,} as follows:

~ h=P -T,
132:P2—T2—2P0, and T:P2—T2+2P0, (35)
P:Pn*Tn*Pn72*Tan (}’l>3) Tn:Pn_Tn_‘_Pnfz_FTan (i’l>3)

The new expression (32) for U,(c) may now be substituted into Eq. (31b) in order to calculate J;({). This
requires the calculation of the following integrals:

1o g+ (\ do Voo (64¢ .
\/o—C log(G)(O__C)? and /D—C (J——C>o- dU, n e N. (36)
Let us define the second integral in Eq. (36) as
1/6¢ O-+C
E = —— ] o™ do.
0= [ (5 ) e (37)
From Gradshteyn and Rydzhik (1980), these integrals are
e 1 ¢
Bo0) = o + 20 tox(o — O = -~ .+ 2Clog (7 ) - 2 log(au), (39)
and
1/oc 1— CO-C
E_1({) = [2log (¢ — {) — log(a)],.,” = 21log o7 ) (39)
and
an+ I CP n—p [oe
E, () = 20 log (0 — ¢ +2CZ s (40a)

c

= E, ()= ! [1 GZ+1}+2C”“log<lgac)

art! o — ¢

o:,_

n—1 »
— 20" log (o) +2¢ ¢ {

a””] forn =1, (40b)
n—p

p=0
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and
_ 2 n—1 1/oe
E_(0) = [m*'é [log (o —{) — log (0)] + 25; = Cpo_,,_p] (41a)
- 1 1 n—1 2 1 - CO-C
—— log(a. +2CZ P [ 21’_%} for n>=2. (41b)

Calculating the first integral in Eq. (36), the result is

/ﬁ:/ﬁc log (6] (ng %:210g(§) log(ﬁ) +2[ (;) —F(%ﬂ (42)

where the function F log(z) is well-behaved and analytic except on ]-oco, 0], defined as
71
F*(z) =/ og (o) do (43)
, o—1

Details of the calculations leading to Eq. (42) are given in Appendix B.
The functions Ji({) in Eq. (31b) are determined by substituting U;({) , Eq. (34), into Eq. (31b) and by
using Egs. (38)—(42):

J(E00 = 1Pty (Bo(©) + EalD) + 2 T (Bol©) — E=(0) —% UL(0)E 1 (0)
+ %Znu:kl Pus2 [En(0) + E—uiny (£ zl: L falE (©) = E—(u2)(0)]

1
il {log(C) {10g<1 _‘iC) } —|—Flog( - C) —Flog(ez)c>}. (44)

The function Uy(6,) in Eq. (44) is defined as Uy (0.) = Ui (o, = €'%) with U,(0) given by Eq. (34). U,(0.) is
obtained the following form:

cos[(n+1)0J 5 sin[(n+1)0] } (45)

U(0.) = =T, 0. P, =T,

k(0c) 1 +ZO:{,U31< +2 w1 +2 w1
The resultant force F given by Eq. (26) can also be expressed as a function of {P,, T,} by replacing p(0) and
t(0) by their Fourier series expressions (32), and integrating over 0:

F(H):—R{T10 +Z‘ sin( 9“‘]}. (46)

Now, substituting F from Eq. (46), and J,({,0.) from Egs. (44) and (45) into Eq. (31a), we can write the
stress functions ¢, (zx, 0.) = ®;({, 0.) as an infinite sum of known functions of { and 0. multiplied by the
coefficients {P,, T,}. These functions can be expressed in terms of z; and 0, by using Eq. (11). The stress
functions, after straightforward but extensive calculations are

= b,
bz, 00) = 'z, Q) (zi,k, 0.) + ; — QP (2, k,0.), k=1,2. (47)

The functions Q\"(z,, &, 6,), { Q" (z,mk, 0c)}, -5, and {Q(z,k,0.)}, . , are given in Appendix C.
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Substituting the stress function Equations (47) into Egs. (1) and (3), the displacements (u,0) and the
stresses (o,, 0,, T,,) can be written as infinite series in terms of coefficients {P,, 7,}. Similarly, the stresses in
polar coordinates (o,, 6y, 7.4) can be obtained as infinite series with coefficients {P,, 7,} by substituting the
stress functions Eq. (47) into Eq. (48a)—(48c):

G, =2 ‘.Re{(sin(@) — 1y €08 (0))’ ¢, (21, 00) + (sin () — p cos (0))’ ) (22, ec)}, (48a)

oo =2 fﬁe{(,ul sin (0) + cos(0))°¢)(z1,0.) + (1 sin(0) + cos ()¢l (s, QC)}, (48b)
_ (sin(0) — p cos(0)) (w sin(0) + cos(0))@) (z1,0c)

e %{ (5in(0) 1 05(0) (1 5in(0) + c05(0)) 4.0 } e

2.3. Verification

The stress functions ¢, (z;,0.) given by Eq. (47) were specifically developed so that they would give zero
stresses in the region of the hole boundary defined by |0] > 0.. This can be verified by arbitrarily choosing
an angle 0. and coefficients Py and {P,,7,},- ;, and then by calculating the resulting stress functions and
stresses throughout the plate. The stresses ¢.(R,0) and 7,4(R,0) around the hole should be equal to the
normal stress p(f) and shear stress #(f) on the hole boundary (corresponding to the chosen coefficients {P,,
T,}) for |0] < 0. and be identically equal to zero for |0] > 0..

A typical composite laminate made of T800/924C with the layup [(45/-45/(0);]; was chosen to verify the
validity of Eq. (47). The elastic properties of that laminate were E, = 10529 GPa, E, = 23.64 GPa,
G,, = 20.04 GPa, v, = 0.67. The contact angle 0. was chosen to be equal to 60°. The normal stress dis-
tribution p(0) and tangential stress distribution #(0) over [0,60] were arbitrarily taken as

p(0) =1—3cos(0) + 5cos (20) — 4cos(30), (49a)

£1(0) = 2sin(0) — 4sin (20) + 3sin (30). (49b)

The coefficients {P,, 7, },_, ,,» Eq. (32), are then known.
Fig. 4(a) shows the chosen normal stress p(6) and the calculated normal stress o.(R,0) over the [0,90]
interval. Fig. 4(b) shows the chosen tangential stress #(0) and the calculated tangential stress t,9(R,0).
The calculated stresses a,.(R,0) and 1.9(R,0) match very well with the normal and shear stresses p(0) and
1(0), respectively up to 0 = 0., and the stresses o,(R,0) and 1,4(R,0) are equal to zero for 0 greater than 0.
This proves that the stress-free boundary conditions are indeed identically satisfied by the newly derived
stress functions given by Eq. (47).

3. Applications

Because the stress functions {¢;},_, , automatically satisfy the no-stress boundary condition along the
hole for 0 greater than 0., the remaining boundary conditions Eq. (20) need only be applied on the [0,0.]
interval instead of on the whole interval [0,90]. Very often, such as for instance, in pin-loaded holes
problems, the numerical method of collocation is used to enforce the boundary conditions. Using the above
stress functions should consequently lead to a less time-consuming collocation method, since less collo-
cation points will be required.
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Fig. 4. (a) Stress distribution p(6) (+) and normal stress ¢,(R,0) (—) on the hole boundary for a contact angle 6. = 60° and for
p(0) =1—3cos(0) + 5cos(20) — 4cos(30), (b) Stress distribution #(0) (+) and tangential stress t,4(R,0) (—) on the hole boundary for
a contact angle 0, = 60° and for #(0) = 2sin (0) — 4sin(26) + 3sin(36).

In the case of a pin-loaded hole with a pin-hole clearance, the part of the hole where the pin is in contact
with the plate [-0.,0.] is subjected to displacement boundary conditions due to the pin, or displacement/
stress boundary conditions in the case of friction. The rest of the hole boundary is stress-free, since the pin is
not in contact with the hole (Fig. 5).

4. Conclusions

A new approach has been presented to address problems in composite plates with a hole, where a part of
the hole boundary is stress-free. Stress functions were derived, which automatically give normal and tan-
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Initial
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Fig. 5. Pin and hole geometry.



P. Berbinau, C. Soutis | International Journal of Solids and Structures 38 (2001) 143—159 155

gential stresses equal to zero over the unloaded part of the hole boundary. It was verified numerically that
these stress functions indeed possessed that property. The present approach is quite general and could be
applied to a range of problems. In a forthcoming article, it will be applied to the case of a pin-loaded hole
with a pin-hole clearance.

The method could also be extended to include the case, where the composite plate is subjected to far-field
boundary conditions. Using the superposition principle (Ireman et al., 1993), stress functions for a plate
with a hole under multidirectional remote loading could be added to the above stress functions, (Eq. (47)).
This will yield stresses and displacements for a composite plate with a hole subjected to loading both on the
hole boundary and at infinity (multiaxial loading).
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Appendix A

The coefficients u; and i, are the complex roots (two by two conjugate: u,, u,, ii;, ii,) of the characteristic
equation:

appt = 2ai618 + (2a1y + ags) 1 — 2asspt + azn = 0.

In the case of an orthotropic plate, i.e. when the load is along the principal axes of the plate, this charac-
teristic equation becomes

EXX EXX
't + (G —2vxy>u2+—=0-

oy E,,

The roots can then be written in closed form, and are

! B Ex _ i o Ee _ 0 [Ex o En
V2 Eyy 2Gyy Viy + V2 Eyy + 2Gyy Vay if Eyy > 2Gyy nya
Hy
k=12 i _ 1)k Exe _ Exx Exx Exe i Exx Exx
7 (( 1) \/ (2@ ny) VE, T \/ \VE, T <2GW ny')) if By <26,

The roots y are written in complex form as gy = o +if;, which defines {o, B}, ,-
The coefficients py, ¢, p2, ¢ appearing in Eq. (1) are given by:

— Vype

_ 2
Pr = an W, +an — aie Y,
a
qr = a2 by + ﬂ—zf — s,

for k = 1,2. The coefficients a;;, a», and a;, are the compliances in plane stress or plane strain.
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The complex constants {A;},_,, in Eq. (12) have the following real and imaginary parts:
an [(061 - 062)2 + ﬁik - ﬁi]

2 o
+an |:4“3k“kz+ﬁk _ 2moy g 1}
5}

22
a3 By, o By

(o + B1) (43 + 1)

ERC{Ak} =

dnaxf; [(051 - 062)4 + 2(051 - 0‘2)2(5? + ﬂ§> + (ﬁ% - ﬁ%)z} 7

(68 + B7) (2 + B) {ana(as — an) + 4 [ 225 — 222 ] |

Im{A} = (— 1! - - =
2ray [(011 — )" 4+ 2(a — o) (ﬁ% + ﬂﬁ) + (/3% - ﬁ%) ]

Appendix B

The integral in Eq. (40) is:

1/oc 1/ac 1/0¢
/ log (o) <Zi—§> dT: = 2/ —lzg_(z) do — / log(o) do

o

1/ee o+ {\ do e Jog (o) log’(0) e e Jog (o)
= /UC 10g(<7)(6_€>7—2/”C O__cda—[ 5 L —2/(rc do.

c o-¢

This last integral cannot be expressed in terms of elementary functions. However, by performing the
change of variable ¢ — (o , this integral can be written as

1/oc log (o) /e qg 1/{ac log (o)
/a o—Cd log(é’)/(I a—1+/ do

/¢ ac/( 0—_1

1/o¢ _ 1/o.
= / log = log({) {10g<10 _C?) - log(ac)} +/ log (o) do

g 0—1

[ eato (Zfé}dff=2log<o1°g(<2%i§;)+2[“(é)-F*(%ﬂ»

where the function F*(z) is defined as follows

F(z) = / “log(o) 4,

o—1

The function Flog(z) is well behaved and analytic except on ]—00,0].
lim,_;{log(s)/(¢ — 1)} =1 and it takes a finite value at 0 as

" log (o) n’
F*(l):/ -1
, o—1 6

It is continuous as
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Appendix C

The functions @\ (z,, k&, 0.), {7 (2, k,0)}, - »» and {QP) (¢, k,0.)},~ » in Eq. (47) are

R(1+ipy)

zr—+/ 22 —R2 2
Ay log {—k . 1.3<1+”‘)} R(_1>k
2 2 2 —
il ™ 2R (1+42) 4y — 1)
2n (/41 llz IOg |: R(1+ipy) :|

log [z;, ZiRz(”ﬂi)] log R<1+iuk)—eioc(zr szRZ(IHLf)) 0
C
R(1+ipy) eife — (zk— zf—R2(1+uz)) ,

Q" (z, k, 0.) = RO,
+

R(1+ipy)
X
_%E—I(Zk)“r {F*( el()c) F*(emc>]
o R(— 1) | |
(Zk,k 0 ) W{En,z(zk) — E,,,(Zk) — 21E,1(Zk) Sm [(l’l — 1)90]}
zp—+ /2 —R2 (1442
Ay log |:—R(k]+iuk() Hk)]
+ Rsin[(n — 1)0,] ] n=2,
i(—1)f i0, 2=/ AR+
+2ﬂ(#1*#z) log [1 — e R(/1+iu/;) : :|
QLP>(Z/” k, HC) L {En,z(Zk) —+ E,,,(Zk) — 2E,1(Zk) COS[(}’Z — 1)0C]}, nz= 2.
167‘(#1 1)

The functions {E.,({)} appear above as {E, »(z) * E_,(z)},>, and E_i(z). From Egs. (38)—(41),
expressions for {E, »(z;) £ E_,(z)}, -, and E_;(z) can be derived by using Eq. (11), which relate { to z.
The expressions for {E, (z) £ E_,(z)}, -, and E_(z) are

R(l+i,u)—e“’°( - zg—R2(1+u§))
R(1+ip) et — (2~ V- R+ 1))

E,I(Zk) =2 log (

4i0; | iz +
E()(Zk) +E,2(Zk) = T [ Hazk

1+ 1

AR a] (RO - (a - R )
R L+ R<1+iuk>ei9c—(zk— F-R+m))
410, —RY(1+ 1) +z .

EO(Zk)_E_Z(Zk>:_T 1+(.“2 M) + 2 — 4isin (0.)
k

4 |imact VE-RUEE) || R(1+igy) = ¢ (2 — VA R+ 48)

R L+ R(1+ i) e — (7 — /5 = R+ 14) )
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E, 2(z¢) + E_,(zx) = 40, sin {— i(n—1)log (Z’f - Rz(gl_;f;i; + Mﬁ))}

+4 cos [—i(n— 1) log (Zk

i ﬂ
)
)

R(1 +ip,) — ei® (zk -
x log
R(1 + i) el — (Zk — — R (1 + 12
n—3 _:
sin[(n —2 —p)0.] . . Z— 7z —R(1+143)
+8 ——————sin| —i(p+1)lo - for n = 3.
2. n=2-p) AR S (= "

Eys(z) — E_ps(z) = —4i0. cos {— i(n—1)log (z" - szllf;g + 1) )] - n‘f - sin[(n = 1)0]

_ 2
+4isin|:—i(n—l)log<zk 1+1iul+'u )}
k

R(l‘i‘iﬂk)—emC(k z —Rz +,Uk
x log

R(l—l—i,u,c)ei‘%—(k VZ - R(1+ 1)

2sin[(n — 2 — p)b.) zi — /7t — RY(1 + 1)
— 8i v = P cos| —i(p+1)lo k - k for n > 3.
D A R (=

The expression for the stress functions ¢;(z;) can be simplified if they are assumed to be independent of the
angle 0. (but do not satisfy the stress-free boundary conditions):

0 15"
(;bk(zk) = Zk, +Z Q<T Zk, )+nz:;n_ 1 QLP>(Zk7k)'
The stress functions have a form similar to Eq. (47), but the functlons Q ) (z.k), {Q"(z,k)}n =2, and
(T

{QP) (2, k)}n =2 are con51derably simpler than the functions Q (zk,kﬂ) {Q! >(zk,k, 0.)}n = 2 and
{Q@(awkﬁ)}n

—R(+ i)

Q" (z, k) = mR A, log | 2=
1 (Zka ) T k Og R(l—l—l,uk)

)

n—1
2~ R+ &)

—i(=D*R
0 (5, k) = L= 1) e

4 — 1)

for n = 2,

for n > 2.

n—1
O (2, k) = = DRy |z — /73— R(1+13)
4 4w — 1) R(1 +1ipy)
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