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Abstract

A new analytical method for solving mixed boundary value problems along holes in composite plates is presented.

This addresses problems, where a part of the hole boundary is stress-free, and the other part is subjected to dis-

placement or/and load boundary conditions. The present approach simpli®es and speeds up the numerical calculations

for the implementation of the boundary conditions by deriving stress functions, which automatically satisfy the stress-

free boundary condition over a part of the hole boundary. Only the boundary conditions on the loaded part of the hole

need, therefore, to be enforced, typically by a numerical technique such as collocation. Application of this method to

orthotropic laminates with a pin-loaded hole problem is discussed. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mixed boundary value problems in solid mechanics are intrinsically di�cult to solve analytically owing
to the mixed nature of the boundary conditions: stresses are prescribed on part of the boundary, and
displacements on the remaining part. The mathematical di�culties encountered in the analytical derivation
are supplemented by numerical di�culties found when enforcing the boundary conditions. A speci®c type
of mixed boundary value problem is that of plates (isotropic or anisotropic), which contain one or more
holes on the boundary on which load or displacements are applied. This work presents a general theory for
anisotropic plates with a hole, where a part of the hole boundary is stress-free. A wide range of practical
problems fall into this category. A typical example is the pin-loaded hole problem. In this case, the region of
the hole that is not in contact with the pin is the stress-free part of the boundary.

The present theory is able to simplify the problem by incorporating the stress-free boundary conditions
directly into the expression for the stress functions, from which the stresses and displacements in the plate
are directly derived. The stresses and displacements therefore, automatically satisfy the stress-free boundary
conditions, and only the remaining boundary conditions on the rest of the hole boundary need to be
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enforced. This simpli®es the nature of the problem by simplifying the boundary conditions, and can even
reduce it to a simple boundary value problem if the remaining boundary conditions on the rest of the hole
boundary are pure displacement conditions. In addition, the numerical methods used to enforce these
remaining boundary conditions can be implemented faster, hence cutting down computing costs, because
the length of the hole boundary involved is shorter.

The present approach is based on the theory of anisotropic elasticity developed by Lekhnitskii (1968)
and subsequently by Savin (1961). A brief review of the theory applied to anisotropic plates containing
holes is presented in Section 2.1. In order to reduce the mathematical calculations, the case of orthotropic
plate containing a single hole will be treated here, but the theory can be easily extended to the case of an
anisotropic plate containing multiple holes. The derivation of stress functions satisfying the stress-free
boundary conditions on part of the hole boundary is given in Section 2.2.

2. Theory

2.1. Complex variable theory

The present work is based on the theory of anisotropic elasticity developed by Lekhnitskii (1968). This
approach leads to an analytical expression for the stress functions f/k�zk�gk�1;2 in the form of series with
unknown coe�cients. The stresses and displacements in the plate can be calculated, once these stress
functions are determined. Eq. (1) give the relation between the displacements (u, v) in the~x and~y directions,
respectively, and the stress functions at a point M(x,y) on the plane:

u x; y� � � 2 Re p1 /1 z1� � � p2 /2 z2� �f g;
v x; y� � � 2 Re q1 /1 z1� � � q2 /2 z2� �f g;

�
�1�

with

zk � x� lk y for k � 1; 2: �2�
The coe�cients lk, pk and qk depend only on the plate elasticity constants and are given in Appendix A. The
in-plane stresses (rx; ry ; sxy) are related to the stress functions by

rx x; y� � � 2 Re l2
1 /01 z1� � � l2

2 /02 z2� �
n o

;

ry x; y� � � 2 Re /01 z1� � � /02 z2� �
n o

;

sxy x; y� � � ÿ2 Re l1/
0
1 z1� � � l2 /02 z2� �

n o
;

8>>><>>>: �3�

where a prime (0) indicates di�erentiation with respect to the variable z1 or z2.
The unknown coe�cients in the stress functions f/kgk�1;2 are determined by applying the boundary

conditions on the hole surface that correspond to the physical problem. These boundary conditions are by
nature of a mixed-mode type, with displacement conditions enforced over part of the hole, and stress
conditions enforced over the rest of the hole boundary.

Lekhnitskii (1968) and Savin (1961) showed that the stress functions for an anisotropic plate containing
a hole and subjected to a uniform stress state at in®nity, f/k�zk�gk�1;2 are of the form:

/k zk� � � Ak log zk� � � B�k
ÿ � iC�k

�
zk � /0

k zk� � for k � 1; 2; �4�
where f/0

k�zk�gk�1;2 are holomorphic functions in the region S outside the hole, and go to zero at in®nity.
They are therefore of the form:
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/0
k zk� � �

X1
n�0

b k� �
n

zn
k

for k � 1; 2: �5�

In Eq. (4), the logarithm represents the presence of the hole. The coe�cients B�k and C�k represent the
contribution from the uniform stress state at in®nity and can be related to these remote stresses (Savin,
1961). For simplicity, it is considered here that no remote stresses are applied, and therefore B�k � C�k � 0.

In order to express the boundary conditions on the hole, the stress functions /0
k�zk�must be related to the

forces Xn(s) and Yn(s) in the~x and~y directions, respectively, at a point M located on the hole edge, Fig. 1.
The real s is the coordinate of the point M(x,y) along the hole boundary. From Savin (1961)

2Re /1 z1� � � /2 z2� �f g � ÿ R s
0

Yn ds� C1 � f1 x; y� �;
2Re l1/1 z1� � � l2/2 z2� �f g � R s

0
Xn ds� C2 � f2 x; y� �;

�
�6�

where the complex numbers zk are related to the coordinates (x; y) by Eq. (2), and Ck are constants. Eq. (6)
de®ne the functions f1(x,y) and f2(x,y) as equal to the right-hand sides.

From Eq. (6), an expression for the resultant vector (XAB � iYAB) acting on an arc (AB) of the hole
boundary can be derived:

XAB � iYAB �
Z B

A

Xn � iYn ds

) XAB � iYAB � l1�
h

ÿ i�/1 z1� � � �l1

�
ÿ i
�

�/1 z1� � � l2� ÿ i�/2 z2� � � �l2

�
ÿ i
�

�/2 z2� �
iB

A
;

�7�

where a top bar (�) represents the complex conjugate.
The coe�cients Ak in Eq. (4) are then related to the resultant vector (X � iY ) of forces on the hole

boundary by expressing ®rst, the condition that (X � iY ) is equal to the quantity (Xn�s� � iYn�s�) integrated
over the whole hole boundary H, and second, that displacements �u�s�; v�s�� on the hole do not increase in
value after a complete turn around H, Fig. 1. This leads to the following pair of equations:R

H Xn s� � � iYn s� �ds � X � iY ;R
H u s� � � iv s� �ds � 0:

�
�8�

Substituting Eqs. (1) and (7) (with A � B) into Eq. (8), the following system of equations is obtained:

Fig. 1. Loads on the hole boundary.

P. Berbinau, C. Soutis / International Journal of Solids and Structures 38 (2001) 143±159 145



1� il1� �A1 ÿ 1� i�l1

� �
�A1 � 1� il2� �A2 ÿ 1� i�l2

� �
�A2 � ÿ X�iY

2p ;

p1 � iq1� �A1 ÿ �p1 � i�q1

� �
�A1 � p2 � iq2� �A2 ÿ �p2 � i�q2

� �
�A2 � 0:

8<: �9�

In Eq. (9), we have used the fact that around H, the function f log�z�g undergoes an increase, equal to (2pi).
The orthotropy of the problem ensures that the vector resultant of forces on H is along the ~x axis.
Therefore, X � F and Y � 0. Solving Eq. (9) yields the complex coe�cients A1 and A2 under the following
form:

Ak � F Dk for k � 1; 2: �10�
The complex constants fDkgk�1;2 are given in Appendix A.

In the following calculations, it is more convenient to perform a conformal transformation and map the
outside of the hole S of radius R into the inside of the unit circle (c) (Fig. 2). This conformal transformation
is de®ned by Eq. (11) (Savin, 1961):

zk f� � � R
2

1�
�
� ilk�f�

1ÿ ilk

f

�
() f zk� � � zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �p

R 1� ilk� � : �11�

Using Eq. (11), the stress functions {/k(zk)}k�1;2 in Eq. (4) can now be expressed as a function of f, the
coordinate image of zk by the conformal transformation,

/k zk� � � Uk f� � � ÿF Dk log f� � � U0
k f� � for k � 1; 2: �12�

It can be proved (Berbinau and Soutis, 1998) that the new functions { U0
k�f�gk�1;2 de®ned by Eq. (12) are

holomorphic inside the unit circle. Eq. (6) then becomes

2Re U1 r� � � U2 r� �f g � f1 h� �;
2Re l1U1 r� � � l2U2 r� �f g � f2 h� �:

�
�13�

Here the argument of the functions fUk�f�gk�1;2 is r � eih as the points are on the unit circle (Fig. 2). Now,
let us de®ne functions ff 0

k �h�gk�1;2 as follows:

Fig. 2. Conformal transformation.
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2Re U0
1 r� � � U0

2 r� �� 	 � f 0
1 h� �;

2Re l1U
0
1 r� � � l2U

0
2 r� �� 	 � f 0

2 h� �:
�

�14�

The f 0
k (h) functions can be related to the fk(h) functions using Eqs. (12) and (13), i.e.

f 0
1 h� � � f1 h� � � 2F Re D1 � D2� � log r� �f g;

f 0
2 h� � � f2 h� � � 2F Re l1D1 � l2D2� � log r� �f g:

�
�15�

The cornerstone of the present theoretical approach is the Schwartz formula mentioned by Muskhe-
lishvili (1963) and Savin (1961). The Schwartz formula relates a function F(f) holomorphic inside the unit
circle (c) to the value of its real part fRe �F �g �h� on the contour of the unit circle and is given by

F f� � � 1

2pi

I
c

Re F� �f g h� � r� f
rÿ f

dr
r
� constant: �16�

Applying the Schwartz formula to the holomorphic functions U0
k(f) and using Eq. (14), one obtains

U0
1 f� � � i

4p l1ÿl2� �
H

c l2f 0
1 h� � ÿ f 0

2 h� �� �
r�f
rÿf

dr
r ;

U0
2 f� � � ÿi

4p l1ÿl2� �
H

c l1f 0
1 h� � ÿ f 0

2 h� �� �
r�f
rÿf

dr
r :

(
�17�

The constants in Eq. (16) have been discarded as they have no in¯uence on the stresses.
The boundary value problem is now ready to be solved. Indeed, the functions fk(h) can be calculated

using Eq. (6) from Xn and Yn, which are known directly from the stress boundary conditions around the
hole. The functions f 0

k (h) can then be calculated using Eq. (15). Substituting f 0
k (h) into Eq. (17) and

evaluating the integrals, the functions U0
k (f) are obtained. The functions Uk (f) can then be derived from Eq.

(12). Using the conformal transformation, Eq. (11) will ultimately give the stress functions /k (zk) from
which stresses and displacements around the hole can be calculated from Eqs. (3) and (1), respectively.

2.2. Case of a hole with no stresses on part of its boundary

In all previous analytical work on problems with boundary conditions applied to a hole boundary (see
for instance De Jong, 1982; Murthy et al., 1991; Naidu et al., 1985; Mangalgiri and Dattaguru, 1986; Ir-
eman et al., 1993; Rangavittal, 1995), the Schwartz formula was not used. Instead, the stress functions given
by Eq. (12) were written in the following form, using the fact that the functions U0

k (f) are holomorphic
inside the unit circle:

/k zk� � � Uk f� � � ÿF Dk log f� � �
X1
n�1

a k� �
n fn for k � 1; 2; �18�

where the coe�cients a k� �
n are complex constants. The boundary conditions on the hole (including the stress-

free conditions if applicable) were then enforced in order to calculate the associated coe�cients a k� �
n by an

appropriate numerical method, such as the collocation method.
In the present work, the aim is to incorporate a part of the boundary conditions (namely the stress-free

conditions) directly into the stress functions, so that these stress functions satisfy automatically the stress-
free conditions. The numerical procedure for the enforcement of the remaining boundary conditions will
then be simpli®ed, and less time consuming. Such an approach is possible as the holomorphic stress
functions U0

k (f) have been written in the form of Eq. (17), thanks to the use of the Schwartz formula (16).
The derivation of stress functions that automatically satisfy the stress-free boundary conditions on part of
the hole is performed below.

A part of the hole boundary is therefore, assumed to be stress-free, and the rest of the hole boundary is
subjected to displacement conditions, stress conditions, or a mixture of both. As the plate is orthotropic
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(the loading axis~x is along one of the principal directions), the boundary conditions are symmetrical with
respect to the~x axis. Hence, the geometry of the problem is as indicated in Fig. 3. The hole radius is R. The
plate is considered in®nite.

The angle hc de®nes the stress-free region and the region, where the boundary conditions are applied.
The stress-free region is thus de®ned by jhj > hc. The region, where boundary conditions are applied is
de®ned by jhj 6 hc. In the latter region, the boundary conditions will be combinations of a radial and a
circumferential boundary condition chosen among the following four conditions:

radial conditions
ur R; h� � � Dr h� �
rr R; h� � � Sr h� �

�
for jhj6 hc; �19a�

circumferential conditions
uh R; h� � � Dh h� �
srh R; h� � � Srh h� �

�
for jhj6 hc: �19b�

In Eqs. (19a) and (19b), ur(r,h) and uh(r,h) are the radial and circumferential components of the dis-
placements, respectively. Similarly, rr(r,h) and srh(r,h) are the normal and shear components of the stresses,
respectively. The functions Dr(h), Sr(h), Dh(h), and Srh(h) are known functions of the angle h and represent
the boundary conditions along the hole.

The loaded region de®ned by jhj6 hc may be subjected, in the most general case, to a normal pressure
p(h) and shear t(h) distributions, Fig. 3. The Xn and Yn components of the force at a point M(s), Fig. 1, are
therefore (Lekhnitskii, 1968; Berbinau and Soutis, 1998),

Xn � ÿp h� � dy
ds � t h� � dx

ds ;

Yn � p h� � dx
ds � t h� � dy

ds :

(
�20�

Fig. 3. Geometry of a partially loaded hole in an orthotropic plate.

148 P. Berbinau, C. Soutis / International Journal of Solids and Structures 38 (2001) 143±159



The function f1 and f2 de®ned by Eq. (7) can now be written in terms of p and t by substituting Xn and Yn

from Eq. (20)

f1 h� � � R
R

p h� � sin h� �dh� R
R

t h� � cos h� �dh� k1;
f2 h� � � R

R
p h� � cos h� �dhÿ R

R
t h� � sin h� �dh� k2:

�
where k � constant: �21�

Following Savin (1961), the unloaded region on the hole boundary starts at the point A de®ned by h � hc.
Hence at point A, f1 � f2 � 0. This gives the values of the two constants in Eq. (21), and eventually the
following expression for f1(h) and f2(h) are obtained:

f1 h� � � R
R

p h� � sin h� � � t h� � cos h� �dh
ÿ �ÿ R

R
p h� � sin h� � � t h� � cos h� �dh

� �
hc

n o
f2 h� � � R

R
p h� � cos h� � ÿ t h� � sin h� �dh

ÿ �ÿ R
R

p h� � cos h� � ÿ t h� � sin h� �dh
� �

hc

n o
8<: for hj j6 hc:

�22�
Eq. (22) are valid for hc P h P ÿ hc. Indeed, when h reaches ()hc), the ®rst integrals in f1(h) and f2(h)

become equal to their value at h � ÿhc. Beyond ()hc), i.e. in the region jhjP hc, they remain constant as
that region is stress-free. Therefore, the functions f1(h) and f2(h) are constant over jhj > hc and equal to

f1 h� � � R
R

p h� � sin h� � � t h� � cos h� �dh
� �

ÿhc

n o
ÿ R

R
p h� � sin h� � � t h� � cos h� �dh

� �
hc

n o
f2 h� � � R

R
p h� � cos h� � ÿ t h� � sin h� �dh

� �
ÿhc

n o
ÿ R

R
p h� � cos h� � ÿ t h� � sin h� �dh

� �
hc

n o
8><>:

for hj j > hc �23�
Now, as the boundary conditions are symmetrical with respect to the~x axis, p(h) is even and t(h) is odd.

Thus, Eq. (23) becomes

f1 h� � � 0

f2 h� � � ÿ2R
R

p h� � cos h� � ÿ t h� � sin h� �dh
� �

hc

n o(
for hj j > hc: �24�

Now, by moving once around the hole from point A in the clockwise direction, functions f1(h) and f2(h) will
increase by amounts equal to the right-hand sides in Eq. (24). Hence, from Eq. (6), the resultant of the
forces on the hole boundary are

X � ÿ2R
R

p h� � cos h� � ÿ t h� � sin h� �dh
� �

hc

n o
Y � 0:

(
�25�

There is no component of the resulting force in the~y direction. This was to be expected as the problem is
symmetrical with respect to the~x axis, and therefore, the resultant F of the loads on the hole boundary is in
the~x direction. The resultant force F is therefore,

F � ÿ2R
Z hc

0

p h� � cos h� � ÿ t h� � sin h� �dh: �26�

Now, the functions f1 and f2 need to be expressed in terms of r before we can calculate the integrals in
Eq. (17). Using r � eih in Eqs. (23) and (25), we obtain

f1 r� � �
ÿ R

2

R
1ÿ 1

r2

ÿ �
p r� � � i 1� 1

r2

ÿ �
t r� �dr

� R
2

R
1ÿ 1

r2

ÿ �
p r� � � i 1� 1

r2

ÿ �
t r� �dr

� �
hc

0 for hj j > hc;

8<: for hj j6 hc �27�
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f2 r� � �
R
2

R ÿi 1� 1
r2

ÿ �
p r� � � 1ÿ 1

r2

ÿ �
t r� �dr

ÿR
2

R ÿi 1� 1
r2

ÿ �
p r� � � 1ÿ 1

r2

ÿ �
t r� �dr

� �
hc

for hj j6 hc

ÿR
R ÿi 1� 1

r2

ÿ �
p r� � � 1ÿ 1

r2

ÿ �
t r� �dr

� �
hc

for hj j > hc:

8><>: �28�

In Eqs. (27) and (28), the functions p(r) and t(r) are de®ned from the previous functions p(h) and t(h) by the
expressions p[h(r)] and t[h(r)]. Substituting Eq. (15) into Eq. (17), after simpli®cations, we obtain for
k � 1; 2

U0
k f� � � i ÿ 1� �k�1

4p l1 ÿ l2� �
ÿiF
2p

I
c

r� f
rÿ f

� �
log r� �

r
dr

�
�
I

c
l3ÿk f1 r� �� ÿ f2 r� �� r� f

rÿ f

� �
dr
r

�
: �29�

From Savin (1961), the ®rst integral in Eq. (29) is:I
c

r� f
rÿ f

� �
log r� �

r
dr � 4p i log rc� ÿ f� � 2p2; �30�

where rc is de®ned as rc � eihc .
An expression for the stress functions fU0

k �f�gk�1;2 can now be derived by substituting Eqs. (27), (28) and
(30) into Eq. (29). Then the stress functions fUk �f�gk�1;2 are obtained by substituting fU0

k �f�gk�1;2 into Eq.
(12). The calculations are straightforward but lengthy. Only the ®nal results are presented here:

Uk f; hc� � � ÿF Dk log f� �
(

ÿ ÿ 1� �ki

2p l1 ÿ l2� � log 1
ÿ ÿ feihc

�)ÿ ÿ 1� �kiR
4p l1 ÿ l2� � Jk f; hc� � �31a�

with

Jk f� � � 1

2

Z 1=rc

rc

Uk r� �� ÿ Uk rc� �� r� f
rÿ f

� �
dr
r
; �31b�

Uk r� � �
Z

p r� �
�
ÿ l3ÿk 1

�
ÿ 1

r2

�
� i 1

�
� 1

r2

��
dr

ÿ
Z

t r� � il3ÿk 1

��
� 1

r2

�
� 1

�
ÿ 1

r2

��
dr: �31c�

The stress functions /k(zk)�Uk(f(zk)) could then be directly obtained from Eq. (31) by changing f into zk

using Eq. (11).
The next step is to derive a closed form expression for the stress functions /k(zk) under the form of a

series with unknown coe�cients. For this purpose, the stress distributions p(h) and t(h) in Eq. (31c) are
expressed as a Fourier series with unknown coe�cients. These series are

p h� � � P0 �
P1

1

Pn cos nh� �;

t h� � �P1
1

Tn sin nh� �:

8>><>>: �32�

The coe�cients P0 and fPn; Tngk�1...n are unknown.
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Using the relation r � eih, p(r) and t(r) take the following form:

p r� � � P0 � 1

2
Pn

X1
1

rn� � rÿn�; t r� � � ÿ i

2
Tn

X1
1

rn� ÿ rÿn�: �33�

The functions Uk(r), Eq. (31c) can then be calculated by substituting Eq. (33) into Eq. (31c) and integrating.
They are

Uk r� � � 1

2
�P2 l3ÿk r

�
� 1

r

�
� i

2
�T2 r

�
ÿ 1

r

�
� i �T1 log r� � � 1

2

X1
n�1

�Pn�2

l3ÿk

n� 1
rn�1

�
� 1

rn�1

�
� 1

2

X1
n�1

�Tn�2

i

n� 1
rn�1

�
ÿ 1

rn�1

�
: �34�

The new coe�cients { �Pn, �Tn} are related to the coe�cients {Pn, Tn} as follows:

�P2 � P2 ÿ T2 ÿ 2P0;
�Pn � Pn ÿ Tn ÿ Pnÿ2 ÿ Tnÿ2 �n P 3�

8<: and

�T1 � P1 ÿ T1;
�T2 � P2 ÿ T2 � 2P0;
�Tn � Pn ÿ Tn � Pnÿ2 � Tnÿ2 �n P 3�:

8<: �35�

The new expression (32) for Uk(r) may now be substituted into Eq. (31b) in order to calculate Jk(f). This
requires the calculation of the following integrals:Z 1=rc

rc

log�r� r� f
rÿ f

� �
dr
r

and

Z 1=rc

rc

r� f
rÿ f

� �
r�n dr; n 2 N: �36�

Let us de®ne the second integral in Eq. (36) as

E�n�f� �
Z 1=rc

rc

r� f
rÿ f

� �
r�n dr: �37�

From Gradshteyn and Rydzhik (1980), these integrals are

E0 f� � � r� � 2f log r� ÿ f��1=rc

rc
� 1

rc

ÿ rc � 2f log
1ÿ frc

rc ÿ f

� �
ÿ 2f log rc� �; �38�

and

Eÿ1 f� � � 2 log r�� ÿ f� ÿ log r� ��1=rc

rc
� 2 log

1ÿ frc

rc ÿ f

� �
; �39�

and

En f� � � rn�1

n� 1

"
� 2fn�1 log r� ÿ f� � 2f

Xnÿ1

p�0

fprnÿp

nÿ p

#1=rc

rc

�40a�

) En f� � � 1

n� 1

1

rn�1
c

�
ÿ rn�1

c

�
� 2fn�1 log

1ÿ frc

rc ÿ f

� �

ÿ 2fn�1 log rc� � � 2f
Xnÿ1

p�0

fp

nÿ p
1

rnÿp
c

�
ÿ rnÿp

c

�
for n P 1; �40b�
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and

Eÿn f� � � ÿ1

nÿ 1� �rnÿ1

"
� 2

fnÿ1
log r�� ÿ f� ÿ log r� �� � 2f

Xnÿ1

p�1

1

nÿ p� �fprnÿp

#1=rc

rc

�41a�

) Eÿn f� � � 1

nÿ 1

1

rnÿ1
c

�
ÿ rnÿ1

c

�
� 2

fnÿ1
log

1ÿ frc

rc ÿ f

� �
� 2

fnÿ1
log rc� � � 2f

Xnÿ1

p�1

1

nÿ p� �fp rnÿp
c

�
ÿ 1

rnÿp
c

�
for n P 2: �41b�

Calculating the ®rst integral in Eq. (36), the result isZ 1=rc

rc

log r� � r� f
rÿ f

� �
dr
r
� 2 log f� � log

1ÿ frc

rc ÿ f� �rc

� �
� 2 F �

1

frc

� ��
ÿ F �

rc

f

� ��
; �42�

where the function F log�z� is well-behaved and analytic except on ])1, 0], de®ned as

F � z� � �
Z z

0

log r� �
rÿ 1

dr �43�

Details of the calculations leading to Eq. (42) are given in Appendix B.
The functions Jk(f) in Eq. (31b) are determined by substituting Uk(f) , Eq. (34), into Eq. (31b) and by

using Eqs. (38)±(42):

Jk f; hc� � � 1

4
�P2 l3ÿk E0 f� �� � Eÿ2 f� �� � i

4
�T2 E0 f� �� ÿ Eÿ2 f� �� ÿ 1

2
Uk hc� �Eÿ1 f� �

� 1

4

X1
1

l3ÿk

n� 1
�Pn�2 En f� �� � Eÿ n�2� � f� ��� 1

4

X1
1

i

n� 1
�Tn�2 En f� �� ÿ Eÿ n�2� � f� ��

� i �T1 log f� � log
1ÿ eihcf
eihc ÿ f

� ���
ÿ ihc

�
� F log

1

eihcf

� �
ÿ F log

eihc

f

� ��
: �44�

The function Uk(hc) in Eq. (44) is de®ned as Uk�hc� � Uk�rc � eihc ) with Uk(r) given by Eq. (34). Uk(hc) is
obtained the following form:

Uk hc� � � ÿ �T1 hc �
X1

0

l3ÿk
�Pn�2

cos n� 1� �hc� �
n� 1

�
ÿ �Tn�2

sin n� 1� �hc� �
n� 1

�
: �45�

The resultant force F given by Eq. (26) can also be expressed as a function of { �Pn, �Tn} by replacing p(h) and
t(h) by their Fourier series expressions (32), and integrating over h:

F hc� � � ÿR �T1 hc

(
�
X1
n�2

�Tn
sin nÿ 1� �hc� �

nÿ 1

)
: �46�

Now, substituting F from Eq. (46), and Jk(f,hc) from Eqs. (44) and (45) into Eq. (31a), we can write the
stress functions /k�zk; hc� � Uk�f; hc� as an in®nite sum of known functions of f and hc multiplied by the
coe�cients { �Pn, �Tn}. These functions can be expressed in terms of zk and hc by using Eq. (11). The stress
functions, after straightforward but extensive calculations are

/k zk; hc� � � �T1 X T� �
1 zk; k; hc� � �

X1
n�2

�Tn

nÿ 1
X T� �

n zk; k; hc� � �
X1
n�2

�Pn

nÿ 1
X P� �

n zk; k; hc� �; k � 1; 2: �47�

The functions X T� �
1 �zk; k; hc�; fX T� �

n �zk; k; hc�gn P 2, and fX P� �
n �zk; k; hc�gn P 2 are given in Appendix C.
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Substituting the stress function Equations (47) into Eqs. (1) and (3), the displacements (u,v) and the
stresses (rx; ry ; sxy) can be written as in®nite series in terms of coe�cients { �Pn, �Tn}. Similarly, the stresses in
polar coordinates (rr; rh; srh) can be obtained as in®nite series with coe�cients { �Pn, �Tn} by substituting the
stress functions Eq. (47) into Eq. (48a)±(48c):

rr � 2 Re sin h� ��
n

ÿ l1 cos h� ��2 /01 z1; hc� � � sin h� �� ÿ l2 cos h� ��2/02 z2; hc� �
o
; �48a�

rh � 2 Re l1 sin h� ��
n

� cos h� ��2/01 z1; hc� � � l2 sin h� �� � cos h� ��2/02 z2; hc� �
o
; �48b�

srh � ÿ2 Re
sin h� � ÿ l1 cos h� �� � l1 sin h� � � cos h� �� �/01 z1; hc� �
� sin h� � ÿ l2 cos h� �� � l2 sin h� � � cos h� �� �/02 z2; hc� �

( )
: �48c�

2.3. Veri®cation

The stress functions /k(zk,hc) given by Eq. (47) were speci®cally developed so that they would give zero
stresses in the region of the hole boundary de®ned by jhj > hc. This can be veri®ed by arbitrarily choosing
an angle hc and coe�cients P0 and fPn; Tngn P 1, and then by calculating the resulting stress functions and
stresses throughout the plate. The stresses rr(R,h) and srh(R,h) around the hole should be equal to the
normal stress p(h) and shear stress t(h) on the hole boundary (corresponding to the chosen coe�cients {Pn,
Tn}) for jhj6 hc and be identically equal to zero for jhj > hc.

A typical composite laminate made of T800/924C with the layup [(45/)45/(0)3]s was chosen to verify the
validity of Eq. (47). The elastic properties of that laminate were Ex � 105:29 GPa, Ey � 23:64 GPa,
Gxy � 20:04 GPa, mxy � 0:67. The contact angle hc was chosen to be equal to 60°. The normal stress dis-
tribution p(h) and tangential stress distribution t(h) over [0,60] were arbitrarily taken as

p�h� � 1ÿ 3cos�h� � 5cos�2h� ÿ 4cos�3h�; �49a�

t�h� � 2sin�h� ÿ 4sin�2h� � 3sin�3h�: �49b�
The coe�cients fPn; Tngk�1...n, Eq. (32), are then known.

Fig. 4(a) shows the chosen normal stress p(h) and the calculated normal stress rr(R,h) over the [0,90]
interval. Fig. 4(b) shows the chosen tangential stress t(h) and the calculated tangential stress srh(R,h).

The calculated stresses rr(R,h) and srh(R,h) match very well with the normal and shear stresses p(h) and
t(h), respectively up to h � hc, and the stresses rr(R,h) and srh(R,h) are equal to zero for h greater than hc.
This proves that the stress-free boundary conditions are indeed identically satis®ed by the newly derived
stress functions given by Eq. (47).

3. Applications

Because the stress functions f/kgk�1;2 automatically satisfy the no-stress boundary condition along the
hole for h greater than hc, the remaining boundary conditions Eq. (20) need only be applied on the [0,hc]
interval instead of on the whole interval [0,90]. Very often, such as for instance, in pin-loaded holes
problems, the numerical method of collocation is used to enforce the boundary conditions. Using the above
stress functions should consequently lead to a less time-consuming collocation method, since less collo-
cation points will be required.
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In the case of a pin-loaded hole with a pin-hole clearance, the part of the hole where the pin is in contact
with the plate [)hc,hc] is subjected to displacement boundary conditions due to the pin, or displacement/
stress boundary conditions in the case of friction. The rest of the hole boundary is stress-free, since the pin is
not in contact with the hole (Fig. 5).

4. Conclusions

A new approach has been presented to address problems in composite plates with a hole, where a part of
the hole boundary is stress-free. Stress functions were derived, which automatically give normal and tan-

Fig. 4. (a) Stress distribution p(h) (+) and normal stress rr(R,h) (±±) on the hole boundary for a contact angle hc � 60° and for

p�h� � 1ÿ 3cos�h� � 5cos�2h� ÿ 4cos�3h�, (b) Stress distribution t(h) (+) and tangential stress srh(R,h) (±±) on the hole boundary for

a contact angle hc � 60° and for t�h� � 2sin�h� ÿ 4sin�2h� � 3sin�3h�.

Fig. 5. Pin and hole geometry.
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gential stresses equal to zero over the unloaded part of the hole boundary. It was veri®ed numerically that
these stress functions indeed possessed that property. The present approach is quite general and could be
applied to a range of problems. In a forthcoming article, it will be applied to the case of a pin-loaded hole
with a pin-hole clearance.

The method could also be extended to include the case, where the composite plate is subjected to far-®eld
boundary conditions. Using the superposition principle (Ireman et al., 1993), stress functions for a plate
with a hole under multidirectional remote loading could be added to the above stress functions, (Eq. (47)).
This will yield stresses and displacements for a composite plate with a hole subjected to loading both on the
hole boundary and at in®nity (multiaxial loading).
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Appendix A

The coe�cients l1 and l2 are the complex roots (two by two conjugate: l1; l2; �l1; �l2) of the characteristic
equation:

a11l
4 ÿ 2a16l

3 � 2a12� � a66�l2 ÿ 2a26l� a22 � 0:

In the case of an orthotropic plate, i.e. when the load is along the principal axes of the plate, this charac-
teristic equation becomes

l4 � Exx

Gxy

�
ÿ 2mxy

�
l2 � Exx

Eyy
� 0:

The roots can then be written in closed form, and are

lk
k�1;2

�
ÿ1� �kÿ1��

2
p

��������������������������������������������
Exx
Eyy

q
ÿ Exx

2Gxy
ÿ mxy

� �r
� i��

2
p

��������������������������������������������
Exx
Eyy

q
� Exx

2Gxy
ÿ mxy

� �r
if

�����
Exx
Eyy

q
> Exx

2Gxy
ÿ mxy ;

i��
2
p ÿ 1� �kÿ1

���������������������������������������
Exx

2Gxy
ÿ mxy

� �
ÿ

�����
Exx
Eyy

qr
�

��������������������������������������������
Exx
Eyy

q
� Exx

2Gxy
ÿ mxy

� �r� �
if

�����
Exx
Eyy

q
< Exx

2Gxy
ÿ mxy :

8>><>>:
The roots lk are written in complex form as lk � ak � ibk, which de®nes fak; bkgk�1;2.

The coe�cients p1, q1, p2, q2 appearing in Eq. (1) are given by:

pk � a11 l2
k � a12 ÿ a16 lk;

qk � a12 lk � a22

lk
ÿ a26;

�

for k � 1; 2. The coe�cients a11, a22, and a12 are the compliances in plane stress or plane strain.
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The complex constants fDkgk�1;2 in Eq. (12) have the following real and imaginary parts:

Re Dkf g �

a2
1 � b2

1

ÿ �
a2

2 � b2
2

ÿ � a12 a1 ÿ a2� �2 � b2
3ÿk ÿ b2

k

h i
�a22

4a2
3ÿkÿa2

k�b2
k

a2
3ÿk�b2

3ÿk
ÿ 2aka3ÿk

a2
k�b2

k
ÿ 1

� �8><>:
9>=>;

4pa22bk a1 ÿ a2� �4 � 2 a1 ÿ a2� �2 b2
1 � b2

2

ÿ �� b2
1 ÿ b2

2

ÿ �2
h i ;

Im Dkf g � � ÿ 1�k�1
a2

1 � b2
1

ÿ �
a2

2 � b2
2

ÿ �
a12 a2 ÿ a1� � � a22

a1

a2
2
�b2

2

ÿ a2

a2
1
�b2

1

h in o
2pa22 a1 ÿ a2� �4 � 2 a1 ÿ a2� �2 b2

1 � b2
2

ÿ �� b2
1 ÿ b2

2

ÿ �2
h i :

Appendix B

The integral in Eq. (40) is:

Z 1=rc

rc

log r� � r� f
rÿ f

� �
dr
r
� 2

Z 1=rc

rc

log r� �
rÿ f

drÿ
Z 1=rc

rc

log r� �
r

dr

)
Z 1=rc

rc

log r� � r� f
rÿ f

� �
dr
r
� 2

Z 1=rc

rc

log r� �
rÿ f

drÿ log2 r� �
2

� �1=rc

rc

� 2

Z 1=rc

rc

log r� �
rÿ f

dr:

This last integral cannot be expressed in terms of elementary functions. However, by performing the
change of variable r! fr , this integral can be written asZ 1=rc

rc

log r� �
rÿ f

dr � log f� �
Z 1=frc

rc=f

dr
rÿ 1

�
Z 1=frc

rc=f

log r� �
rÿ 1

dr

)
Z 1=rc

rc

log r� �
rÿ f

dr � log f� � log
1ÿ frc

rc ÿ f

� ��
ÿ log rc� �

�
�
Z 1=rc

rc=f

log r� �
rÿ 1

dr

Z 1=rc

rc

log r� � r� f
rÿ f

� �
dr
r
� 2 log f� � log

1ÿ frc

rc ÿ f� �rc

� �
� 2 F �

1

frc

� ��
ÿ F �

rc

f

� ��
;

where the function F ��z� is de®ned as follows

F � z� � �
Z z

0

log r� �
rÿ 1

dr:

The function F log�z� is well behaved and analytic except on ])1,0]. It is continuous as
limr!1 log r� �=�rÿ 1�f g � 1 and it takes a ®nite value at 0 as

F � 1� � �
Z 1

0

log r� �
rÿ 1

dr � p2

6
:
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Appendix C

The functions X T� �
1 (zk, k, hc), fX T� �

n �zk; k; hc�gn P 2, and fX P� �
n �zk; k; hc�gn P 2 in Eq. (47) are

X T� �
1 zk; k; hc� � � Rhc

Dk log
zkÿ

��������������������
z2

kÿR2 1�l2
k� �p

R 1�ilk� �

� �
� i ÿ1� �k

2p l1ÿl2� � log 1ÿ eihc
zkÿ

��������������������
z2

kÿR2 1�l2
k� �p

R 1�ilk� �

� �
8>>><>>>:

9>>>=>>>;�
R ÿ 1� �k

4p l1 ÿ l2� �

�
log

zkÿ
��������������������
z2

kÿR2 1�l2
k� �p

R 1�ilk� �

� �
log

R 1�ilk� �ÿeihc zkÿ
��������������������
z2

kÿR2 1�l2
k� �p� �

R 1�ilk� � eihcÿ zkÿ
��������������������
z2

kÿR2 1�l2
k� �p� �24 35ÿ ihc

8<:
9=;

ÿ ihc

2
Eÿ1 zk� � � F � 1

f eihc

� �
ÿ F � eihc

f

� �h i
8>>>><>>>>:

9>>>>=>>>>;;

X T� �
n zk; k; hc� � � R ÿ 1� �k

16p l1 ÿ l2� � Enÿ2 zk� �f ÿ Eÿn zk� � ÿ 2iEÿ1 zk� � sin n�� ÿ 1�hc�g

� R sin n�� ÿ 1�hc�
Dk log

zkÿ
��������������������
z2

kÿR2 1�l2
k� �p

R 1�ilk� �

� �
� i ÿ1� �k

2p l1ÿl2� � log 1ÿ eihc
zkÿ

��������������������
z2

kÿR2 1�l2
k� �p

R 1�ilk� �

� �
8>>><>>>:

9>>>=>>>;; n P 2;

X P� �
n zk; k; hc� � � ÿi

R ÿ 1� �k l3ÿk

16p l1 ÿ l2� � Enÿ2 zk� �f � Eÿn zk� � ÿ 2Eÿ1 zk� � cos n�� ÿ 1�hc�g; n P 2:

The functions {E�n(f)} appear above as fEnÿ2�zk� � Eÿn�zk�gn P 2 and Eÿ1�zk�. From Eqs. (38)±(41),
expressions for fEnÿ2�zk� � Eÿn�zk�gn P 2 and Eÿ1�zk� can be derived by using Eq. (11), which relate f to zk.
The expressions for fEnÿ2�zk� � Eÿn�zk�gn P 2 and Eÿ1�zk� are

Eÿ1 zk� � � 2 log
R 1� ilk� � ÿ eihc zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
R 1� ilk� �eihc ÿ zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
0@ 1A;

E0 zk� � � Eÿ2 zk� � � 4ihc

R
ilkzk �

�������������������������������
z2

k ÿ R2 1� l2
k� �

p
1� l2

k

" #

� 4

R
ilk

�������������������������������
z2

k ÿ R2 1� l2
k� �

p
� zk

1� l2
k

" #
log

R 1� ilk� � ÿ eihc zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
R 1� ilk� �eihc ÿ zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
0@ 1A;

E0 zk� � ÿ Eÿ2 zk� � � ÿ 4ihc

R
ilk

�������������������������������
z2

k ÿ R2 1� l2
k� �

p
� zk

1� l2
k

" #
ÿ 4i sin hc� �

ÿ 4

R
ilkzk �

�������������������������������
z2

k ÿ R2 1� l2
k� �

p
1� l2

k

" #
log

R 1� ilk� � ÿ eihc zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
R 1� ilk� �eihc ÿ zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
0@ 1A;
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Enÿ2 zk� � � Eÿn zk� � � 4hc sin

"
ÿ i n� ÿ 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �p

R 1� ilk� �

 !#

� 4 cos

"
ÿ i n� ÿ 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

 !#

� log
R 1� ilk� � ÿ eihc zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �p� �

R 1� ilk� �eihc ÿ zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �p� �

0@ 1A

� 8
Xnÿ3

p�0

sin nÿ 2ÿ p� �hc� �
nÿ 2ÿ p� � sin

"
ÿ i p� � 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

 !#
for n P 3:

Enÿ2 zk� � ÿ Eÿnÿ2 zk� � � ÿ4 ihc cos

"
ÿ i n� ÿ 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

 !#
ÿ 4i

nÿ 1
sin n�� ÿ 1�hc�

� 4i sin

"
ÿ i n� ÿ 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

 !#

� log
R 1� ilk� � ÿ eihc zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p� �
R 1� ilk� �eihc ÿ zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �p� �

0@ 1A

ÿ 8i
Xnÿ3

p�0

sin nÿ 2ÿ p� �hc� �
nÿ 2ÿ p� � cos

"
ÿ i p� � 1� log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

 !#
for n P 3:

The expression for the stress functions /k(zk) can be simpli®ed if they are assumed to be independent of the
angle hc (but do not satisfy the stress-free boundary conditions):

/k zk� � � �T1 X T� �
1 zk; k� � �

X1
n�2

�Tn

nÿ 1
X T� �

n zk; k� � �
X1
n�2

�Pn

nÿ 1
X P� �

n zk; k� �:

The stress functions have a form similar to Eq. (47), but the functions X T� �
1 (zk,k), fX T� �

n �zk; k�gn P 2, and
fX P� �

n �zk; k�gn P 2 are considerably simpler than the functions X T� �
1 (zk,k,hc), fX T� �

n �zk; k; hc�gn P 2, and
fX P� �

n �zk; k; hc�gn P 2:

X T� �
1 zk; k� � � pR Dk log

zk ÿ
�������������������������������
z2

k ÿ R2 1� l2
k� �p

R 1� ilk� �

" #
;

X T� �
n zk; k� � � ÿi ÿ 1� �kR

4 l1 ÿ l2� �
zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �p

R 1� ilk� �

" #nÿ1

for n P 2;

X T� �
n zk; k� � � ÿ ÿ 1� �kRl3ÿk

4 l1 ÿ l2� �
zk ÿ

�������������������������������
z2

k ÿ R2 1� l2
k� �

p
R 1� ilk� �

" #nÿ1

for n P 2:
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